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integrable functions with respect top-adic valued Gaussian
distributions
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Abstract. We construct a representation of the Weyl group in thep-adic Hilbert space of
functions which are square integrable with respect to ap-adic valued Gaussian distribution. The
operators corresponding to position and momentum are determined by groups of unitary operators
with parameters restricted to some balls in the fieldQp of p-adic numbers. A surprising fact is
that the radii of these balls are connected by ‘an uncertainty relation’ which can be considered as a
p-adic analogue of the Heisenberg uncertainty relations. Thep-adic Hilbert space representation
of the Weyl group is the basis for a calculus of pseudo-differential operators and for an operator
quantization overp-adic numbers.

1. Introduction

Interest in the physics of non-Archimedean quantum models [1–13] is based on the idea
that the structure of space–time for very short distances (less than ‘Planck’s length’) might
conveniently be described in terms of non-Archimedean numbers. There are different
mathematical ways to describe this violation of the Archimedean axiom. One is given
by non-standard analysis [2, 14, 15], where a non-Archimedean extension?R of the field
of real numbersR is used. See [1–4] for applications of methods of non-standard analysis
to mathematical physics. Another one isp-adic analysis [16–21], where complete non-
Archimedeanp-adic extensionsQp of the incomplete field of rational numbersQ are used.
See [5–13, 22, 23] for applications ofp-adic numbers in mathematical physics.

Representations of groups in Hilbert spaces is one of the cornerstones of ordinary
quantum mechanics. It is very natural to try to developp-adic quantum mechanics in a
similar way. In the present paper we construct a representation of the Weyl–Heisenberg
group in ap-adic Hilbert space (see [6, 24, 25] forp-adic Hilbert spaces), the space
L2(Qp, νb) of L2-functions with respect to ap-adic valued Gaussian distributionνb (the
symbolb indicates the covariance function). Here the situation differs very much from the
one of ordinary quantum mechanics. If we denote byU(α) andV (β) the groups of unitary
operators corresponding to position and momentum operators respectively, then these groups
are defined only for parametersα and β belonging to ballsUR(b) and Ur(b), respectively,
whereR(b) and r(b) depend on the covarianceb of the Gaussian distribution. Moreover
these radii are connected by ap-adic analogue of the Heisenberg uncertainty relation.

We also study the representation of the translation group in the spaceL2(Qp, νb). Here
the result differs also from the one of ordinary quantum mechanics and it is more similar
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to the one which holds in quantum field theory where Gaussian distributions on infinite
dimensional spaces are used. Ifµ is a Gaussian measure on an infinite dimensional Hilbert
spaceH then we cannot construct a representation of translations from all ofH in L2(H, µ)
because of the well known fact that the translationµh of a Gaussian measure onH by a
vector h ∈ H may be singular with respect toµ, see, for example, [26] (and [2, 27] in
connection with problems of quantum fields). It is well known thatµh is equivalent toµ
if and only if h belongs to a certain proper (‘Cameron–Martin’) subspace. In a similar way
we cannot construct in the spaceL2(Qp, νb) a representation of translations by all elements
h in Qp, in fact we have to restrict the considerations to translations belonging to some ball
(which is an additive subgroup inQp), whose radius depends onb. This fact is connected
with the non-existence of translation invariant measures in thep-adic case (similarly as for
infinite-dimensional spaces over the field of real numbers).

2. Groups of unitary isometric operators in a p-adic Hilbert space

The field of real numbersR is constructed as the completion of the field of rational numbers
Q with respect to the metricρ(x, y) = |x − y|, where| · | is the usual valuation given by
the absolute value. The fields ofp-adic numbersQp are constructed in a corresponding
way, by using other valuations. For any prime number thep-adic valuation| · |p is defined
in the following way. At the first, we define it for natural numbers. Every natural number
n can be represented as the product of prime numbers:n = 2r23r3 · · ·prp · · ·. Then we
define|n|p = p−rp , we set|0|p = 0 and| − n|p = |n|p. We extend the definition ofp-adic
valuation | · |p to all rational numbers by setting form 6= 0 : |n/m|p = |n|p/|m|p. The
completion ofQ with respect to the metricρp(x, y) = |x − y|p is a locally compact field
Qp.

Two valuations| · |α and | · |β on Q are said to be equivalent if there exists a positive
real numberc such that| · |α = | · |cβ . It is well known, see [16–21], that| · | and | · |p are
the only possible non-trivial valuations onQ up to equivalence.

Thep-adic valuation satisfies the strong triangle inequality:|x+y|p 6 max(|x|p, |y|p).
Set Ur (a) = {x ∈ Qp : |x − a|p 6 r}, a ∈ Qp, r = pn, n = 0,±1,±2, . . .. This is by
definition the ball inQp with the centre ina of radiusr. Balls are in the same time closed
and open. SetUr ≡ Ur (0).

For anyx ∈ Qp we have a unique canonical expansion (converging in the| · |p-norm)
of the form

x = a−n/pn + · · · a0 + · · · + akp
k + · · · (1)

whereaj = 0, 1, . . . , p − 1, are the ‘digits’ of thep-adic expansion.
The following elementary result ofp-adic analysis will be useful below: a series∑
wn,wn ∈ Qp, convergesiff |wn|p → 0, n → ∞.
Using the definition of thep-adic valuation, we get|n|p 6 1 for every natural number

n. Thus, the sequence|n!|p is decreasing. Moreover we have [16–21]:

p(n−)/(1−p) 6 |n!|p 6 nppn/(1−p) . (2)

Using this estimate, we get that the exponential series

ex =
∞∑
n=0

xn/n!

converges iff|x|p < p1/(1−p). If p 6= 2, then we can rewrite this condition as|x|p < 1 or
x ∈ U1/p(0). If p = 2, then we have|x|2 < 1

2 or x ∈ U1/4(0).
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Let p = 3,mod 4, then the equationx2+1 = 0 has no solutions inQp. We can consider
the quadratic extensionQp(i) with i = √−1 of Qp. In analogy with complex numbers
we setz = x + iy, x, y ∈ Qp, i = √−1, and z̄ = x − iy. The valuation onQp(i) is also
denoted by| · |p, |z|p = √||z|2|p, where|z|2 = zz̄ = x2 + y2. We remark that|z|2 assumes
its values in the fieldQp, whereas|z|p assumes its values in the field of real numbers.

The definition ofp-adic Hilbert spaces [6, 28, 29] is based on a coordinate representation
(an analogue ofl2). For the sequenceλ = (λn) ∈ Q∞

p , λn 6= 0 we set

Hλ =
{
f = (fn) ∈ Q∞

p : the series
∑

f 2
n λn converges inQp

}
.

We have

Hλ =
{
f = (fn) ∈ Q∞

p : lim
n→∞ |fn|p

√|λn|p = 0
}
.

In the spaceHλ we introduce the norm||f ||λ = maxn |fn|p
√|λn|p. The spaceHλ is

a non-Archimedean Banach space in the sense of [19] (over the fieldQp). On the
spaceHλ we introduce a ‘p-adic valued inner product ’(·, ·) consistent with a ‘p-
adic length ’ |f |2λ = ∑

f 2
n λn by setting(f, g)λ = ∑

fngnλn. The p-adic inner product
(·, ·)λ : Hλ × Hλ → Qp is continuous and theCauchy–Buniakovski–Schwarz inequality
holds

|(f, g)λ|p 6 ||f || ||g|| . (3)

(see [6]).

Definition 1. The triplet(Hλ, (·, ·)λ, || · ||λ) is called ap-adic coordinate Hilbert space.

More generally we shall define ap-adic inner product on aQp-linear spaceE as an
arbitrary non-degenerate symmetric bilinear form(·, ·) : E × E → Qp.

Remark. It is impossible to introduce ap-adic analogue of the positive definiteness of a
bilinear form. For instance, for the field ofp-adic numbers any elementγ ∈ Qp can be
represented asγ = (x, x)λ, x ∈ Hλ (this is a simple consequence of properties of bilinear
forms overQp, [18]).

The triplets(Ej , (·, ·)j , || · ||j ), j = 1, 2, whereEj are non-Archimedean Banach
spaces,|| · ||j are norms and(·, ·)j are inner products satisfying (3), are said to be isomorphic
if the spacesE1 and E2 are algebraically isomorphic and the algebraic isomorphism
I : E1 → E2 is isometric and unitary, i.e.||Ix||2 = ||x||1, (Ix, Iy)2 = (x, y)1.

Definition 2. The triplet (E, (·, ·), || · ||) is a p-adic Hilbert space if it is isomorphic to
the coordinate Hilbert space(Hλ, (·, ·)λ, || · ||λ) for a certainλ.

The isomorphic relation divides the family of allp-adic Hilbert spaces into equivalence
classes. An equivalence class is characterized by some coordinate representativeHλ. It is
an unsolved mathematical problem to classify allp-adic Hilbert spaces.

Hilbert spaces over the quadratic extensionsQp(i) of theQp can be introduced in an
analogous way. For a given sequenceλ = (λn) ∈ Q∞

p , λn 6= 0, we set

Hλ = {f = (fn) ∈ Qp(i)
∞ : the series

∑
|fn|2λn converges in the fieldQp}

= {f = (fn) : lim
n→∞ |fn|p

√|λn|p = 0}

||f ||λ = max
n

|fn|p
√|λn|p

(f, g)λ =
∑

fnḡnλn |f |2λ = (f, f )λ =
∑

|fn|2λn ∈ Qp .



5518 S Albeverio and A Khrennikov

The triplet(Hλ, (·, ·)λ, || · ||λ) is ap-adic complex coordinate Hilbert space. A general
p-adic complex Hilbert space(E, (·, ·), || · ||) is by definition isomorphic to somep-adic
complex coordinate Hilbert space.

Remark. We can generalize all results of this paper to consider an analogue of a Hilbert
space using an arbitrary complete fieldK with non-trivial non-Archimedean valuation| · |K
instead of the field ofp-adic numbersQp (and one of quadratic extensionsK(

√
τ) instead

of Qp(i)). We wish to note that a valuation| · |K is said to be a non-Archimedean one
if satisfies to the strong triangle inequality:|x + y|K 6 max[|x|K, |y|K ]. We wish also to
note that a non-Archimedean number field may have a number of non-isomorphic quadratic
extensions. In particular,Qp, p 6= 2, has three non-isomorphic quadratic extensions andQ2

has seven non-isomorphic quadratic extensions. Therefore, also in thep-adic case we may
study representations of the Weyl group, not only in thep-adic Hilbert space overQp(i),
but also inp-adic Hilbert spaces over other quadratic extensions. These representations are
not equivalent. The speculations on possible physical interpretations of the non-equivalent
representations corresponding to different quadratic extensions were presented in [6, 28, 29].

The mathematical theory ofp-adic Hilbert spaces is only in its beginnings, most attention
having been given up to now top-adic Banach spaces [17, 19–21]. To develop a physical
formalism similar to the one used in ordinary quantum mechanics, it is useful to have the
additional structure of a Hilbert space (see [22, 23] for a probabilistic interpretation of the
p-adic inner product).

The first non-Archimedean analogue of a Hilbert space was considered by Kalisch [24].
But a class of non-Archimedean Hilbert spaces introduced in [24] is too restrictive for our
applications. Kalisch introduced Hilbert spaces over a complete separable non-Archimedean
field K with the valuation| · |K which satisfies the following conditions: (K1)|2|K = 1;
(K2) everyx ∈ K, |x|K = 1, (a unit ofK) possesses a square root inK. The last condition
is very strong. In particular,Qp andQp(i) do not satisfy this condition. The only interesting
example of a non-Archimedean field which satisfies the condition (K2) is the completion
Cp of the algebraic closureQa

p of Qp. But this field is not useful for our applications since
it is an infinite dimensional space overQp and there is no continuous involutions onCp.

Remark. We may try to extend our formalism and use elements of the Galious group
G(Cp/Qp) instead of an involution. But this theory is much more complicated.

Now let K be a non-Archimedean field which satisfies the above restrictions. Kalisch
defined a non-Archimedean Hilbert space as a triple(E, (·, ·), ‖ · ‖) where (E, ‖ · ‖) is
a separable non-Archimedean Banach space overK, (·, ·) : E × E → K is a symmetric
bilinear form which satisfies to the following conditions: (K3) the Cauchy–Buniakovski–
Schwarz inequality (3) holds; (K4) for everyx ∈ E there existsα ∈ K such that‖x‖ = |α|K;
(K5) for everyx ∈ E there existsx ′, x ′ 6= 0, such that|(x, x ′)|K = ‖x‖‖x ′‖.

Kalisch proved that every non-Archimedean Hilbert space is isomorphic to the
coordinate Hilbert space overK:

H(K) = {f = (fn) ∈ K∞ : lim
n→∞ fn = 0} .

We wish to note that ourp-adic (and complexp-adic) Hilbert spaces do not satisfy
to the condition (K4). An extended review on different non-Archimedean analogues of a
Hilbert space is contained in [25]. We wish to note that our class ofp-adic Hilbert spaces
does not coincide with anyone considered in [25].

Denote the space of bounded operatorsA : H → H in a p-adic Hilbert spaceH by the
symbol L(H) with norm ‖A‖ = supx 6=0 ‖Ax‖/‖x‖. L(H) is a non-Archimedean Banach
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space,‖A + B‖ 6 max[‖A‖, ‖B‖] and ‖A + B‖ = max[‖A‖, ‖B‖], if ‖A‖ 6= ‖B‖.
Denote the group of linear isometries of thep-adic Hilbert spaceH by the symbol
IS(H) : ‖Ax‖ = ‖x‖ andA(H) = H. An operatorU ∈ L(H) is said to be a unitary
operator, if (Ux,Uy) = (x, y) for all x, y ∈ H andU(H) = H. Denote the group of
unitary operators inH by the symbolUN(H).
Remark. At the moment, we do not know whether every unitary operator in ap-adic
Hilbert space is isometric.

SetUI (H) = IS(H) ∩UN(H). A bounded operatorA in a p-adic Hilbert spaceH is
said to be symmetric iff(Ax, y) = (x,Ay) for all x, y ∈ H.

Remark. A p-adic Hilbert spaceH is not isomorphic to its dual spaceH′. Hence ifA is
an operator inH its adjoint operatorA? acts inH′ and it is not clear what is the analogue
of a self-adjoint operator. On the other hand, as we shall see below some basic operators of
p-adic quantum mechanics are bounded and symmetric in the above sense. For this reason
we shall restrict our considerations to bounded symmetric operators. We also remark that
if x is an eigenvector of the symmetric bounded operatorA,Ax = λx, and(x, x) 6= 0 then
λ belongs toQp (this is a situation very similar to the case of complex Hilbert spaces with
an indefinite metric). It seems that the spectral theory of symmetric operators inp-adic
Hilbert spaces is not yet well developed.

Note that every ballUr in Qp is an additive subgroup ofQp. A mapF : Ur → L(H)
with the propertiesF(α + β) = F(α)F (β), F (0) = I, α, β ∈ Ur , where I is the
unit operator inH is said to be a one parameter group of operators. If we consider
IS(H), UN(H), UI (H) instead ofL(H) we get the definitions of parametric groups of
isometric, unitary and isometric unitary operators respectively. If the mapF : Ur → L(H)
is analytic, the one parameter group is called analytic.

Let a belong to R+. Set [a]−p = sup{λ = pk, k = 0,±1, . . . : λ < a} and
γ (A) = 1/‖A‖p1/(p−1). The following proposition is a consequence of the estimate (2).

Proposition 2.1. Let an operatorA belongs toL(H). The mapα → eαA, α ∈ Ur , r =
[γ (A)]−p , is an analytic one parameter group of isometric operators.

Proof. As eαA = I + ∑∞
m=1(αA)

n/n! = I + ∑∞
m=1Am and ‖Am‖ < 1 for every

m = 1, 2, . . ., we have‖eαAx‖ = max(‖x‖, ‖Amx‖) = ‖x‖ (where we have used that
‖Amx‖ < ‖x‖.) Of course, the operator eαA has an inverse operator, namely e−αA.

Proposition 2.2. Let A be a bounded symmetric operator inH. The mapα → eiαA, α ∈
Ur , r = [γ (A)]−p , is an analytic one parameter group of isometric unitary operators inH.

Proof. The isometric property is proved in the same way as in the previous proposition.
To prove unitarity, we need only to perform algebraic computations which do not depend
on the number field but only on the fact that i2 = −1.

3. p-adic valued Gaussian integration and spaces of square integrable functions

In [6, 28, 29] a general definition of thep-adic valued Gaussian integral was proposed on
the basis of the theory of distributions (a Gaussian distribution was defined as a distribution
whose Laplace transform is of the form exp{b(x, x)/2} with b(x, x) a quadratic function).
For our applications we can use a simpler approach based on the moments of the Gaussian
distribution.
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Let b be ap-adic number,b 6= 0, thep-adic Gaussian distributionνb is defined as a
Qp- linear functional (on the space of polynomials) by its moments

M2n =
∫
Qp

x2nνb(dx) = (2n)!bn/n!2n n ∈ N0

with N0 = {0} ∪ N;

M2n+1 =
∫
Qp

x2n+1νb(dx) = 0 n ∈ N0.

In [6] it was shown that these requirements specifyνb uniquely. We can extend the
integration with respect toνb to the family A of all entire analytic functions fromQp to
Qp. Let g(x) = ∑∞

n=0 anx
n, an ∈ Qp, be an entire analytic function, i.e. such that the

series converges on the wholeQp. Then by definition∫
Qp

g(x)νb(dx) =
∞∑
n=0

anMn .

It is easy to see that the integral is well defined.
If |b|p = p2k+1 we sets(b) = pk; if |b|p = p2k, we sets(b) = pk−1.
Now let us introduce the analogue of Hermite polynomials onQp. We define a Hermite

polynomialHn,b(x) as the unique polynomial which coincides with the function

(−1)nex
2/2b dn

dxn
e−x2/2b (4)

on the ballUs(b).
In the space ofQp(i)-linear combinations of these polynomials we introduce the inner

product

(f, g) =
∫
Qp

f (x)ḡ(x)νb(dx) . (5)

We then see thatHn,b is orthogonal toHn′,b for n 6= n′ with respect to this inner product
and

∫
Qp
H 2
n,b(x)νb(dx) = n!/bn.

As was done in [6], where the special caseb = 1
2 was considered, it is possible to prove

that the Hermite polynomials{Hn,b(x)} form a basis in the spaceA of all entire analytical
functions and to introduce the (Qp(i)-valued) spaceL2(Qp, νb) as the completion ofA in
the norm given by the above inner product. In fact we have (and this can be taken as
definition ofL2(Qp, νb)):

L2(Qp, νb)

=
{
f (x) =

∞∑
n=0

fnHn,b(x), fn ∈ Qp(i) : the series
∞∑
n=0

|fn|2n!/bn converges inQp

}
.

Here we denote the norm inL2(Qp, νb) by ‖ · ‖.
L2(Qp, νb) is a p-adic complex Hilbert space, isomorphic to the complex coordinate

Hilbert spaceHλ for the weight sequenceλ = {n!/bn}. There is no problem to present
examples ofb, for which the spacesL2(Qp, νb) are not isomorphic, but, at the moment, we
cannot solve the general problem of classification ofL2-spaces in thep-adic case.
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4. A representation of the translation group

SetTβ(f )(x) = f (x + β), β ∈ Qp. We shall prove that these operators are bounded for
β ∈ Us(b). Moreover these operators are isometries ofL2(Qp, νb). Using this we shall
construct a representation of the translation group in thep-adic Hilbert spaceL2(Qp, νb).

Lemma 4.1. The formula

TβHn,b(x) =
n∑
j=0

Cjn(β/b)
jHn−j,b(x) (6)

holds for the translations of Hermite polinomials.

Proof. This follows immediately from (4). HereCjn = n!/(j !(n − j)!) are binomial
coefficients.

Theorem 4.1.The operatorTβ belongs toIS(L2(Qp, νb)) for everyβ ∈ Us(b) and the map
T : Us(b) → IS(L2(Qp, νb)), β → Tβ, is analytic.

Proof. Using equation (6), we get

Tβ(f )(x) =
∞∑
n=0

fn

n∑
l=0

Cln(β/b)
lHn−l,b(x)

=
∞∑
l=0

(β/b)l
∞∑
n=l

fnC
l
nHn−l,b(x)

= [I +
∞∑
m=1

βmKm](f )(x)

whereI is the unit operator and the operatorsKm are defined by

Km(f ) = 1

bm

∞∑
l=0

Cmm+lfm+lHl,b.

We shall now prove that these operators are bounded and get an estimate of their norms.
We have

‖Kmf ‖2 = (1/|b|2mp ) max
06l<∞

|Cmm+l|2p|fm+l|2p|l!/bl|p

= (1/|b|mp ) max
06l<∞

[|(m+ l)!/bm+l|p|fm+l|2p]|(m+ l)!/l!m!2|p

6 ‖f ‖2(1/|bmm!|p) max
06l<∞

|(m+ l)!/m!|p 6 (1/|bmm!|p)‖f ‖2 .

Thus we have got

‖Km‖ 6 1/
√|bmm!|p

and, in particular,Km ∈ L(L2(Qp, νb)). If β ∈ Us(b) then

|β|m‖Km‖ 6 (s(b)p1/2(p−1)/
√|b|p)m = λm.

If |b|p = p2k+1, thenλ = p1/2(p−1)/p1/2 < 1. If |b|p = p2k, thenλ = p1/2(p−1)/p < 1.
Set Sβ = ∑∞

m=1Kmβ
m, β ∈ Us(b). As λ < 1, this operator belongs to the space

L(L2(Qp, νb)) and moreover‖Sβ‖ < 1. As Tβf = f + Sβf and ‖Sβf ‖ < ‖f ‖, we get
‖Tβf ‖ = max(‖f ‖, ‖Sβf ‖) = ‖f ‖. Hence the operatorTβ is an isometry of the space
L2(Qp, νb) for everyβ ∈ Us(b).
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5. Gaussian representations for the operators associated with position and momentum

As for ordinary Schr̈odinger quantum mechanics, let us define the coordinate and momentum
operators inL2(Qp, νb) by

x̂f (x) = xf (x)

p̂f (x) = (−i)

(
d

dx
− (x/2b)

)
f (x)

wheref belongs to theQp(i)-linear spaceD of linear combinations of Hermite polynomials.
The coordinate and momentum operators so defined satisfyD ‘canonical commutation

relations’:

[x̂, p̂] = iI (7)

whereI is the unit operator inL2(Qp, νb). We shall see that these relations can be extended
on the whole ofL2(Qp, νb).

Theorem 5.1.The operators of the coordinatex̂ and momentum̂p are bounded in the space
L2(Qp, νb) and

‖x̂‖ = √|b|p ‖p̂‖ = 1/
√|b|p. (8)

Moreoverx̂ and p̂ are symmetric and satisfy (7) onL2(Qp, νb).

Proof. Let

f (x) =
∞∑
n=0

fnHn,b(x) ∈  L2(Qp, νb).

Then using the recurrence formula

Hn+1,b(x) = [xHn,b(x)− nHn−1,b(x)]/b (9)

we get

x̂Hn,b(x) = bHn+1,b(x)+ nHn−1,b(x). (10)

and

x̂f (x) =
∞∑
n=0

bfnHn+1,b(x)+
∞∑
n=1

nfnHn−1,b(x).

Thus, using the strong triangle inequality we get

‖x̂f ‖2 6 max
[
max
n

|b|2p|fn|2p|(n+ 1)!|p/|b|n+1
p ,max

n
|n|2p|fn|2p|(n− 1)!|p/|b|n−1

p

]
= |b|p max

[
max
n

|n+ 1|p|fn|2p|n!|p/|b|np,max
n

|n|p|fn|2p|n!|p/|b|np
]

6 |b|p‖f ‖2

(as |n|p 6 1 for all n ∈ N). Thus‖x̂‖ 6
√|b|p. Now we prove that‖x̂‖2 = |b|p.

Let n = pk, then

σk,b = ‖x̂Hpk,b‖2 = max(|b|2p|(pk + 1)!|p/|b|pk+1
p , |pk|2p|(pk − 1)!|p|/|b|pk−1

p ).

But |(pk+1)!|p = |pk!|p and|p2k(pk−1)!|p = p−k|pk!|p. Thusσk,b = |b|p(|pk!|p/|b|p
k

p ) =
|b|p‖Hpk,b‖2, which proves the first equality in (8).
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Using equations (4) and (10), we get

d

dx
Hn,b(x) = (x/b)Hn,b(x)−Hn+1,b(x) = (n/b)Hn−1,b(x) .

Set T̂x = (d/dx − (x/2b)). We haveT̂xHn,b(x) = (n/2b)Hn−1,b(x) − (1/2)Hn+1,b(x). To
compare this expression with (10), we rewrite it as

T̂xHn,b(x) = (1/2b)[−bHn+1,b(x)+ nHn−1,b(x)] . (11)

The expression in square brackets is the same as in (10), the signum cannot play any role in
the estimates of the max-type. That is why we can get‖T̂x‖ = (1/|b|p)‖x̂‖, which proves
the second equality in (8).

The symmetry ofx̂, p̂ is easily verified from their definition.

6. Unitary isometric one parameter operator groups corresponding to operators
representing position and momentum

We shall compute [γ (x̂)]−p and [γ (p̂)]−p .
If |b|p = p2k+1 then γ (x̂) = 1/(pkp1/2p1/(p−1)). If p 6= 3 then [γ (x̂)]−p = 1/pk+1.

If p = 3 then [γ (x̂)]−p = 1/pk+2. If |b|p = p2k then γ (x̂) = 1/(pkp1/(1−p)) and
[γ (x̂)]−p = 1/pk+1. SetR(b) = [γ (x̂)]−p .

If |b|p = p2k+1 thenγ (p̂) = (p1/2/p1/(p−1))pk. If p 6= 3 then [γ (p̂)]−p = pk. If p = 3
then [γ (p̂)]−p = pk−1. If |b|p = p2k then [γ (p̂)]−p = pk−1.

Setr(b) = [γ (p̂)]−p .
On the basis of propositions 2.1 and 2.2 and theorem 5.1 we easily get the following.

Theorem 6.1. The mapsα → U(α) = eiαx̂, α ∈ UR(b), andβ → V (β) = eiβp̂, β ∈ Ur(b),
are analytic one parameter groups of unitary isometric operators acting onL2(Qp, νb). They
satisfy the Weyl commutation relations

U(α)V (β) = e−iαβV (β)U(α) . (12)

Remark. The restrictions on the domains of the parametersα and β arise from the
commutation factor eiαβ . Furthermore we have

R(b)r(b) = ξ(1/p) (13)

where ξ(1/p) = 1/p2, if |b|p = p2k, and ξ(1/p) = 1/p, p 6= 3, if |b|p = p2k+1, and
ξ(1/3) = 1/27 in the latter case. Thus the dependence on the covarianceb of the Gaussian
distribution has really disappeared. We can consider the relation (13) as ap-adic analogue
of the Heisenberg uncertainty relations. It implies, in particular, that whenr(b) → 0 then
automaticallyR(b) → ∞ and vice versa.

Let us set

Mβf (x) = e−βx̂/2bf (x) =
∞∑
n=0

(−βx̂)n

n!(2b)n
f (x) (14)

for f ∈ L2(Qp, νb). Using proposition 2.1 and theorem 5.1, we easily get the following.

Proposition 6.1. The mapM : Ur(b) → IS(L2(Qp, νb)), β → Mβ, is an analytic one
parameter group (indexed by the ballUr(b)).
Remark. Of course, the functionx → e−βx/2b is not defined on wholeQp and we cannot
consider the operator (14) as an operator of pointweis multiplication.
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7. Operator calculus

It is well known that in the ordinaryL2(R, dx) space the unitary groupV (β) = eiβp̂, β ∈ R,
can be realized as the translation group:V (β)ψ(x) = ψ(x + β) for sufficiently good
functionsψ(x). If we consider the equivalent representation inL2-space with respect to
the Gaussian measureνb(dx) = (e−x2/2b/

√
2πb)dx on R, we get

V (β)ψ(x) = e−β2/4be−βx/2bψ(x + β) (15)

or

V (β) = cβMβTβ (16)

wherecβ = e−β2/4b. We shall now prove that formula (16) is also valid in thep-adic case.
SetS(β) = cβMβTβ, β ∈ Ur(b), where the operatorMβ is defined by (14).

Theorem 7.1. The mapβ → Sβ, β ∈ Ur(b),is one parameter analytic group of isometric
unitary operators acting inL2(Qp, νb).

Proof. First the constantcβ defines an isometric multiplication operator in the space
L2(Qp, νb) for every β ∈ Ur(b) because|cβ |p = 1. On the basis of theorem 5.1 and
proposition 6.1 we get thatS(β) is an isometric one parameter analytic group (because
r(b) 6 s(b)). To prove the unitarity of this group, it is sufficient to show that
(S(β)xn, S(β)xn) = (xn, xn) for all monomialsxn, n = 0, 1, . . . . By equation (14) we
get

(S(β)xn, S(β)xn) = e−β2/2b(e−βx̂/2b(x + β)n, e−βx̂/2b(x + β)n)

= e−β2/2b
∞∑

k,j=0

(−β/2b)k+j (1/k!j !)0kj (n)

where0kj (n) = ∫
Qp
xk+j (x+β)2nνb(dx). By change of variables, according toy = x+β,

in thep-adic Gaussian integral [6] we get

0kj (n) = e−β2/2b
∞∑
m=0

(β/b)m(1/m!)
∫
Qp

(y − β)k+j y2n+mνb(dy).

By proposition 6.1 we get

(S(β)xn, S(β)xn)

= [e−β2/b
∞∑

m,k,j=0

(−β/2b)k+j (β/b)m(1/m!k!j !)(x̂m(x̂ − β)kxn, (x̂ − β)jxn)

= e−β2/b(eβx̂/be−β(x̂−β)/2bxn, e−β(x̂−β)/2bxn) = (xn, xn) .

Lemma 7.1. The groupsS(β) andV (β) havep̂ as their common generator.

Proof. We haveS ′(β)|β=0 = −x/β + T ′
β |β=0 with T ′

β |β=0 = d/dx, so thatS ′(β)|β=0 =
d/dx − x/b. Since bothT ′

β andS ′(β) are bounded this implies the result.

As a consequence of this lemma and the analyticity of the one parameter groupsS(β)

andV (β), we easily have the following.

Theorem 7.2. The representation (15), (16) holds for the operator groupV (β).
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Equation (15) could serve as starting point for an operator quantization based on a
calculus of pseudo-differential operators. Let us consider the expression

a(y, ξ) =
∫

Uθ1

∫
Uθ2
dµ(α) dµ(β) ã(α, β)eiyα+iξβ (17)

defined first for smooth functions̃a(α, β) with compact support,supp ã ⊂ Uθ1 × Uθ2. We
denote by symboldµ(x), wherex is the integration variable, a Haar measure onQp with
values inQp, see [17–19]. For every ballUr this is a translation invariant additive set
function defined on the algebraF(Ur ) generated by balls contained inUr . However, this
measure is not bounded: sup{|µ(A)|p : A ∈ F(Ur )} = ∞. Therefore, there exist continuos
functionsf : Ur → Qp which are not integrable with respect to this measure. However,
the integral with respect toµ is well defined forC1-functionsf : Ur → Qp. The integral
representation (17) gives us the interesting connection between the domains ofã(α, β) and
a(y, ξ).

Theorem 7.3. Let ã be theC1 function and letsupp ã ⊂ Uθ1 × Uθ2. Then the symbola
defined by (17) is theC1-function on the setUθ̄1

× Uθ̄2
with θ̄j θj 6 1/p, j = 1, 2.

The symbola(y, ξ) is not defined outside of the setUθ̄1
×Uθ̄2

. The physical interpretation
of Theorem 7.3 is evident. This is the consequence of the uncertainty relation ‘position–
momentum’.

In analogy with the usual Weyl procedure (see, for example, [30]) we set

âφ(x) =
∫

UR(b)

∫
Ur(b)

dµ(α) dµ(β) ã(α, β)U(α)V (β)φ(x)

=
∫

UR(b)

∫
Ur(b)

dµ(α) dµ(β) ã(α, β)exp{iαx − β2/4b − βx/2b}φ(x + β) .

This formula realizes an analogue of the usualx̂p̂-quantization. In the same way we can
realize thep̂x̂-quantization:

âφ(x) =
∫

UR(b)

∫
Ur(b)

dµ(α)dµ(β)ã(α, β)V (β)U(α)φ(x)

=
∫

UR(b)

∫
Ur(b)

dµ(α) dµ(β) ã(α, β)exp{iα(x − β)− β2/4b − βx/2b}φ(x + β) .

The problem of extending these relations to more general (‘distributional’)ã (in order
to get, in particular, the polynomial symbolsa) will be considered in further work.

8. On exactness of the measurement of positions and momenta

Let us consider the consequences of Theorem 5.1 concerning the measurement process. To
simplify our considerations, we choose|b|p = p2k, k = 0, 1, 2, . . . . Then‖x̂‖ = pk and
‖p̂‖ = p−k.

If |λ|p > ‖x̂‖ = pk, then the resolvent operator̂Rλ = (x̂ − λI)−1 exists andλ does not
belong to the spectrum of the coordinate operator. Thus, it would be impossible to mesure
coordinatesx = λ for such values ofλ. By a similar reasoning we get, that it would be
impossible to measure momentap = µ for µ such that|µ|p > |h|pp−k. But the condition
|λ|p > pk is equivalent to the canonical expansion

λ = λ−lp−l + · · · + λ0 + · · · λmpm + · · · (18)
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whereλj = 0, 1, . . . , p−1, l = k+1, k+2, . . . andλ−l 6= 0. Let us remark that infinitep-
adic fractions should be interpreted only as mathematical idealizations (in a similar way as
for infinite real fractions), whereas physical values are in reality given by rational numbers
of the type

λ = λ−lp−l + · · · + λmp
m . (19)

For the moment, let us consider a system of units where the Planck constanth = 1. Then
we cannot measure momenta

µ = µlp
l + · · · + µmp

m · · · (20)

wherel = k − 1, k − 2, . . . andµl 6= 0 in the present Gaussian representation.
Computing the spectra of thep-adic position and momentum operators directly remains

an open problem (we have only found balls which contain these spectra).
What are the possible physical interpretations of our results?
Our main result can be interpreted as stating that a non-Archimedean structure of space

is equivalent to the finite exactness of a measurement.
This finite exactness may have different physical interpretations. First, we can consider

ourp-adic Hilbert space representation of quantum mechanics as a mathematical realization
of the old idea in quantum mechanics that the result of a measurement involves also
the influence of the measurement equipment. According to Bohm [31] ‘the so-called
‘observables’ are not properties belonging to the observed system alone, but instead
potentialities whose precise development depends just as much on the observing apparatus
as on the observed system.’ How can we include these properties of the observing
apparatus into the structure of the space of quantum states? Thep-adic Hilbert space
representation is one of the possible ways. Here we may fix the exactness of the position
(or momentum) measurement generated by the apparatus and construct thep-adic Hilbert
space representation on the basis of this exactness.

Another physical interpretation of our main result is connected with the old idea of
the existence of a ‘fundamental length.’ According to this point of view, the space is
not homogeneous in the direction of the microworld and there exists some limiting value
of lengths lfund (such that any lengthl < lfund is deprived of any meaning). How can
we describe such a situation in mathematical terms? There are several possibilities, see
[32, 33], and thep-adic numbers are one of them. We have constructed (on the quantum
level) the position representation where there exists a limiting measurable value of the
position. One of the purposes of the ‘fundamental length’ hypotesis was to avoid all
divergences in quantum field theory. Ourp-adic approach (and related ones, see, e.g.,
[5–13, 22, 23, 28, 29]) operates in the same direction: all unbounded quantum mechanical
operators (in the usual quantum mechanical formalism based on real and complex numbers)
become bounded in thep-adic representation. The picture would be reproduced in a quantum
field formalism built on the basis ofp-adic numbers. Such a formalism will be described
in our further investigations.
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