IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Representations of the Weyl group in spaces of square integrable functions with respect to

p-adic valued Gaussian distributions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 5515
(http://iopscience.iop.org/0305-4470/29/17/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 02:29

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 5515-5527. Printed in the UK

Representations of the Weyl group in spaces of square
integrable functions with respect top-adic valued Gaussian
distributions
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Abstract. We construct a representation of the Weyl group in phadic Hilbert space of
functions which are square integrable with respect peaglic valued Gaussian distribution. The
operators corresponding to position and momentum are determined by groups of unitary operators
with parameters restricted to some balls in the fi@lg of p-adic numbers. A surprising fact is

that the radii of these balls are connected by ‘an uncertainty relation’ which can be considered as a
p-adic analogue of the Heisenberg uncertainty relations. pradic Hilbert space representation

of the Weyl group is the basis for a calculus of pseudo-differential operators and for an operator
quantization ovep-adic numbers.

1. Introduction

Interest in the physics of non-Archimedean quantum models [1-13] is based on the idea
that the structure of space—time for very short distances (less than ‘Planck’s length’) might
conveniently be described in terms of non-Archimedean numbers. There are different
mathematical ways to describe this violation of the Archimedean axiom. One is given
by non-standard analysis [2, 14, 15], where a non-Archimedean extemgion the field
of real numbersR is used. See [1-4] for applications of methods of non-standard analysis
to mathematical physics. Another one psadic analysis [16-21], where complete non-
Archimedearp-adic extensiong),, of the incomplete field of rational numbeg are used.
See [5-13, 22, 23] for applications pfadic numbers in mathematical physics.
Representations of groups in Hilbert spaces is one of the cornerstones of ordinary
guantum mechanics. It is very natural to try to devejpjadic quantum mechanics in a
similar way. In the present paper we construct a representation of the Weyl-Heisenberg
group in a p-adic Hilbert space (see [6, 24, 25] for-adic Hilbert spaces), the space
L2(Q,, vp) Of Lo-functions with respect to @-adic valued Gaussian distributiap (the
symbolb indicates the covariance function). Here the situation differs very much from the
one of ordinary quantum mechanics. If we denotelkhiy) and V (B8) the groups of unitary
operators corresponding to position and momentum operators respectively, then these groups
are defined only for parametessand 8 belonging to balld/z, andi, ), respectively,
where R(b) andr(b) depend on the covarianéeof the Gaussian distribution. Moreover
these radii are connected bypaadic analogue of the Heisenberg uncertainty relation.
We also study the representation of the translation group in the dpa¢®,, v;). Here
the result differs also from the one of ordinary quantum mechanics and it is more similar
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to the one which holds in quantum field theory where Gaussian distributions on infinite
dimensional spaces are usedulis a Gaussian measure on an infinite dimensional Hilbert
spaceH then we cannot construct a representation of translations from &alliofL,(H, 1)
because of the well known fact that the translatighof a Gaussian measure G# by a
vectorh € H may be singular with respect to, see, for example, [26] (and [2, 27] in
connection with problems of quantum fields). It is well known tpatis equivalent tou

if and only if 2 belongs to a certain proper (‘Cameron—Martin’) subspace. In a similar way
we cannot construct in the spate(Q,, v,) a representation of translations by all elements
hin Q,, in fact we have to restrict the considerations to translations belonging to some ball
(which is an additive subgroup i@,), whose radius depends én This fact is connected
with the non-existence of translation invariant measures irptiaglic case (similarly as for
infinite-dimensional spaces over the field of real numbers).

2. Groups of unitary isometric operators in a p-adic Hilbert space

The field of real numberg® is constructed as the completion of the field of rational numbers
0 with respect to the metrip(x, y) = |x — y|, where| - | is the usual valuation given by
the absolute value. The fields pftadic numbersQ, are constructed in a corresponding
way, by using other valuations. For any prime number ghedic valuation| - |, is defined

in the following way. At the first, we define it for natural numbers. Every natural number
n can be represented as the product of prime numbers: 223=...p"».... Then we
define|n|, = p~», we set|0], = 0 and| —n|, = |n|,. We extend the definition op-adic
valuation| - |, to all rational numbers by setting far # O : |n/m|, = |n|,/|m|,. The
completion of Q with respect to the metrip,(x, y) = |x — y|, is a locally compact field
Q0.

Two valuations| - |, and| - [ on Q are said to be equivalent if there exists a positive
real number such that| - |, = | - 5. It is well known, see [16-21], thgt- | and] - |, are
the only possible non-trivial valuations ai up to equivalence.

The p-adic valuation satisfies the strong triangle inequality# y|, < max(|x|,, |y|,).
SetU,(a) ={x € Qp i Ix —al, <rl,ae Qpr =p",n=0=x1%2 ... This is by
definition the ball inQ, with the centre irz of radiusr. Balls are in the same time closed
and open. Sa¥, = U, (0).

For anyx € Q, we have a unique canonical expansion (converging in thg-norm)
of the form

Xx=a,/p'+ - a+ - +ap +-- 1)

wherea; =0, 1,..., p — 1, are the ‘digits’ of thep-adic expansion.
The following elementary result op-adic analysis will be useful below: a series
Y wa, wy, € Qp, convergesfft |w,|, — 0,n — oco.
Using the definition of the-adic valuation, we gefn|, < 1 for every natural number
n. Thus, the sequende!|, is decreasing. Moreover we have [16-21]:
p(n*)/(lfp) < |n!|p < nppn/(lfp)_ 2)

Using this estimate, we get that the exponential series

o0
e = Zx”/n!
n=0

converges ifflx|, < pY/d=P. If p # 2, then we can rewrite this condition s/, < 1 or
x € Uyy,(0). If p =2, then we havex|, < 5 or x € Uy4(0).
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Let p = 3, mod 4, then the equatiorf+1 = 0 has no solutions i,. We can consider
the quadratic extensio®, (i) with i = V=1 of Qp. In analogy with complex numbers
we setz = x +iy,x,y € Q,,i = +/—1, andz = x — iy. The valuation onQ, (i) is also
denoted by - |, |z|, = /I|z|2],, where|z|> = zZ = x? + y2. We remark thatz|?> assumes
its values in the field2,, whereagz|, assumes its values in the field of real numbers.

The definition ofp-adic Hilbert spaces [6, 28, 29] is based on a coordinate representation
(an analogue of,). For the sequenck = (A,) € Oy, hn # 0 we set

H;, = {f =(fy) € Q;‘f . the seriesZ fnzk,l converges inQ,,} .
We have
H, = {f = (f) €0y M |filpy/Ihl, = 0} .

In the spaceH, we introduce the norm|f|l, = max, |fulp+/IAxlp. The spaceH, is

a non-Archimedean Banach space in the sense of [19] (over the @ig)Jd On the
space’H, we introduce a p-adic valued inner product (-, ) consistent with a ‘p-
adic length *|f12 = Y f2x, by setting(f, g)» = Y. fug.hn. The p-adic inner product
(-, © HixH, — @, is continuous and th€auchy—Buniakovski-Schwarz inequality
holds

[(fs @alp < SIS ©)
(see [6]).
Definition 1. The triplet(H;, (-, )., |l - |l») is called ap-adic coordinate Hilbert space.

More generally we shall define p-adic inner product on & ,-linear spacef as an
arbitrary non-degenerate symmetric bilinear form) : E x E — Q,.

Remark. It is impossible to introduce @-adic analogue of the positive definiteness of a
bilinear form. For instance, for the field gf-adic numbers any elemept € Q, can be
represented ag = (x, x),, x € H, (this is a simple consequence of properties of bilinear
forms overQ,, [18]).

The triplets(E;, (-,);, Il -1l;), j = 1,2, whereE; are non-Archimedean Banach
spaces}|-||; are norms and, -); are inner products satisfying (3), are said to be isomorphic
if the spacesk; and E, are algebraically isomorphic and the algebraic isomorphism
I: E; — E,isisometric and unitary, i.g|lx]||2 = ||x|]1, (Ux,Iy)2 = (x, ¥)1.

Definition 2. The triplet(E, (-,-), || -||) is a p-adic Hilbert space if it is isomorphic to
the coordinate Hilbert spadé&;, (-, -)x, || - ;) for a certaina.

The isomorphic relation divides the family of altadic Hilbert spaces into equivalence
classes. An equivalence class is characterized by some coordinate represéfjativés
an unsolved mathematical problem to classifyathdic Hilbert spaces.

Hilbert spaces over the quadratic extensig@gi) of the 9, can be introduced in an
analogous way. For a given sequence: (1,) € Q}°, 4, # 0, we set

Hy={f =(fn) € Qp()*: the seriesz | 1?1, converges in the field,}
={f =2 im 1 fulpy/ 1Al = 0}

[1£11x = max| fu /12l

(fr@n =) Fenhn  |fE=(f =) 1fulPhn€ Q.
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The triplet(H,, (-, )., ||-1l,) is a p-adic complex coordinate Hilbert space. A general
p-adic complex Hilbert spaceE, (-, -), ||-1]) is by definition isomorphic to somg-adic
complex coordinate Hilbert space.

Remark. We can generalize all results of this paper to consider an analogue of a Hilbert
space using an arbitrary complete figddwith non-trivial non-Archimedean valuatian |

instead of the field op-adic numbers), (and one of quadratic extensiofs,/7) instead

of Q,(i)). We wish to note that a valuation |x is said to be a non-Archimedean one

if satisfies to the strong triangle inequalityr + y|x < max[x|k, |y|x]. We wish also to

note that a non-Archimedean number field may have a number of non-isomorphic quadratic
extensions. In particula,, p # 2, has three non-isomorphic quadratic extensions@nd

has seven non-isomorphic quadratic extensions. Therefore, also jrable case we may
study representations of the Weyl group, not only in thadic Hilbert space ove@, (i),

but also inp-adic Hilbert spaces over other quadratic extensions. These representations are
not equivalent. The speculations on possible physical interpretations of the non-equivalent
representations corresponding to different quadratic extensions were presented in [6, 28, 29].

The mathematical theory gf-adic Hilbert spaces is only in its beginnings, most attention
having been given up to now te-adic Banach spaces [17, 19-21]. To develop a physical
formalism similar to the one used in ordinary quantum mechanics, it is useful to have the
additional structure of a Hilbert space (see [22, 23] for a probabilistic interpretation of the
p-adic inner product).

The first non-Archimedean analogue of a Hilbert space was considered by Kalisch [24].
But a class of non-Archimedean Hilbert spaces introduced in [24] is too restrictive for our
applications. Kalisch introduced Hilbert spaces over a complete separable non-Archimedean
field K with the valuation| - |x which satisfies the following conditions: (K12|x = 1;

(K2) everyx € K, |x|x = 1, (a unit of K) possesses a square rootin The last condition

is very strong. In particularQ, and Q, (i) do not satisfy this condition. The only interesting
example of a non-Archimedean field which satisfies the condition (K2) is the completion
C, of the algebraic closur@; of Q,. But this field is not useful for our applications since

it is an infinite dimensional space ové), and there is no continuous involutions 6§.

Remark. We may try to extend our formalism and use elements of the Galious group
G(C,/Q,) instead of an involution. But this theory is much more complicated.

Now let K be a non-Archimedean field which satisfies the above restrictions. Kalisch
defined a non-Archimedean Hilbert space as a trile(-,-), || - ||) where(E, || - |)) is
a separable non-Archimedean Banach space &vet:, ) : E x E — K is a symmetric
bilinear form which satisfies to the following conditions: (K3) the Cauchy—Buniakovski—
Schwarz inequality (3) holds; (K4) for everye E there exists € K such thaf|x|| = |o|k;
(K5) for everyx € E there existsc’, x’ # 0, such that|(x, x")|x = |lx||l|x]|.

Kalisch proved that every non-Archimedean Hilbert space is isomorphic to the
coordinate Hilbert space oveésf:

HK) = (f = (f,) € K*: lim £, =0}.

We wish to note that oup-adic (and complexp-adic) Hilbert spaces do not satisfy
to the condition (K4). An extended review on different non-Archimedean analogues of a
Hilbert space is contained in [25]. We wish to note that our clasg-atlic Hilbert spaces
does not coincide with anyone considered in [25].

Denote the space of bounded operatérsH — H in a p-adic Hilbert spacé+ by the
symbol £(H) with norm [[A| = sup. IAx[l/llx]. £(H) is @ non-Archimedean Banach
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space,|A + B[ < max[IAl, [|Bl] and [|A + Bl = max[|Al., [BI], if Al # [BI.
Denote the group of linear isometries of theadic Hilbert spaceH by the symbol
IS(H) : ||Ax| = |lx|| and A(H) = H. An operatorU € L(H) is said to be a unitary
operator, if(Ux,Uy) = (x,y) for all x,y € H andU(H) = H. Denote the group of
unitary operators irt{ by the symbolU N (H).

Remark. At the moment, we do not know whether every unitary operator ip-adic
Hilbert space is isometric.

SetUI(H) = IS(H)NUN(H). A bounded operatoA in a p-adic Hilbert spacé+ is
said to be symmetric iffAx, y) = (x, Ay) for all x, y € H.

Remark. A p-adic Hilbert spacé+ is not isomorphic to its dual spadé’. Hence ifA is

an operator irf{ its adjoint operatoA* acts in’{’ and it is not clear what is the analogue

of a self-adjoint operator. On the other hand, as we shall see below some basic operators of
p-adic quantum mechanics are bounded and symmetric in the above sense. For this reason
we shall restrict our considerations to bounded symmetric operators. We also remark that

if x is an eigenvector of the symmetric bounded operdtoAx = Ax, and(x, x) # 0 then

A belongs toQ,, (this is a situation very similar to the case of complex Hilbert spaces with

an indefinite metric). It seems that the spectral theory of symmetric operatgrsadic

Hilbert spaces is not yet well developed.

Note that every ball/. in Q, is an additive subgroup af,. A map F : U, — L(H)
with the propertiesF(e¢ + 8) = F(o)F(B8), F0) = I,a,8 € U,, where I is the
unit operator inH is said to be a one parameter group of operators. If we consider
IS(H), UN(H), UI(H) instead of L(H) we get the definitions of parametric groups of
isometric, unitary and isometric unitary operators respectively. If the mapl, — L(H)
is analytic, the one parameter group is called analytic.

Let a belong toR,. Set f]; = sugh = p*.k = 0,£1,... : A < a} and
y(A) = 1/||A| p¥»=V. The following proposition is a consequence of the estimate (2).

Proposition 2.1. Let an operatorA belongs toL(H). The mapa — €4, a € U,,r =
[¥(A)],, is an analytic one parameter group of isometric operators.

Proof. As &4 =1+ Y > (@A)"/n! = [+ Y~ A, and |A,|| < 1 for every
m =12,..., we have|e*‘x| = max(x||, [Anx]) = |lx| (where we have used that
lAnx|l < ||lx]|.) Of course, the operatof# has an inverse operator, namely&.

Proposition 2.2. Let A be a bounded symmetric operatorfti The mapa — €%4, « €
U.,r =[y(A)],, is an analytic one parameter group of isometric unitary operatot.in

Proof. The isometric property is proved in the same way as in the previous proposition.
To prove unitarity, we need only to perform algebraic computations which do not depend
on the number field but only on the fact that+ —1.

3. p-adic valued Gaussian integration and spaces of square integrable functions

In [6, 28, 29] a general definition of the-adic valued Gaussian integral was proposed on

the basis of the theory of distributions (a Gaussian distribution was defined as a distribution
whose Laplace transform is of the form €kpx, x)/2} with b(x, x) a quadratic function).

For our applications we can use a simpler approach based on the moments of the Gaussian
distribution.
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Let b be ap-adic numberp # 0, the p-adic Gaussian distribution, is defined as a
Q- linear functional (on the space of polynomials) by its moments

Mo, =f xZ v, (dx) = (20)!1b" /2" n € Ng

P

with N = {0} UN;

M2n+1 = / xz”Hvb(dx) =0 n e No.

In [6] it was shown that these requirements specifyuniquely. We can extend the
integration with respect to;, to the family A of all entire analytic functions fronQ, to
Q,. Letg(x) = > 2 a.x",a, € Qp, be an entire analytic function, i.e. such that the
series converges on the whafg,. Then by definition

J

It is easy to see that the integral is well defined.

If 6], = p**! we sets(b) = p; if |b|, = p*, we sets(b) = pt~L.

Now let us introduce the analogue of Hermite polynomialsign We define a Hermite
polynomial H, ,(x) as the unique polynomial which coincides with the function

g)vp(dx) = " a,M, .
n=0

P

d’ 2
-1 nexz/Zbiefx /2b 4
(-1 o (4)
on the balltfs).
In the space o@D, (i)-linear combinations of these polynomials we introduce the inner
product

(f. 8) =/Q J(x)g(x)vp(dx). ®)

We then see tha#l, ; is orthogonal toH, ; for n # n’ with respect to this inner product
andep HZ,(x)vp(dx) = nl/b".

As was done in [6], where the special cése % was considered, it is possible to prove
that the Hermite polynomialgH, ,(x)} form a basis in the spacd of all entire analytical
functions and to introduce thed(,(i)-valued) spacd.»(Q,, v;) as the completion of4 in
the norm given by the above inner product. In fact we have (and this can be taken as
definition of L2(Q,, vy)):

L2(Qp. vp)

=1f(x)= Zf,,Hn,,,(x), fo€ 0p(): the seriesz | fu?n!/b" converges irQ,,} .

n=0 n=0

Here we denote the norm ibx(Q,, vy) by | - |

L»(Q,, vp) is a p-adic complex Hilbert space, isomorphic to the complex coordinate
Hilbert spaceH,; for the weight sequencg = {n!/b"}. There is no problem to present
examples ob, for which the space&,(Q,, v;) are not isomorphic, but, at the moment, we
cannot solve the general problem of classificatiorlgfspaces in the-adic case.
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4. A representation of the translation group

SetTs(f)(x) = f(x + B), B € Q,. We shall prove that these operators are bounded for
B € U,s. Moreover these operators are isometriesLefQ,, v,). Using this we shall
construct a representation of the translation group ingttalic Hilbert spacd.o(Q,, vp).

Lemma 4.1. The formula
Ty Hyp(x) = Y CJ(B/b) Hyj p(x) (6)
=0

holds for the translations of Hermite polinomials.

Proof. This follows immediately from (4). Here] = n!/(j'(n — j)!) are binomial
coefficients.

Theorem 4.1.The operatolTy belongs tol S(L2(Qp, vp,)) for every g € Uy and the map
T : Uspy — I1S(L2(Q,, vp)), B — Tp, is analytic.

Proof. Using equation (6), we get

To(£)(X) =Y fu > Ch(B/b) Hy_yp(x)

n=0 =0

= 3 (8/b)! 3 JuCo Hyy 5 (x)
2.
1=0

n=l

=[1+ ) B"Kul(f)(x)

m=1

wherel! is the unit operator and the operatdfs are defined by

1 o0
Km(f) = ﬁ Z C;Z-&-lﬁn-!-lHl,b-
=0

We shall now prove that these operators are bounded and get an estimate of their norms.
We have

1K fI = (U/1BI2") max [Cotyy 21 fusa B101/8),
= (U/1ly) max[|n + DL/ || fsr 21l Om + D1/ im1?),

< IFIRQ/1B" ml ) max |(m + Dt /ml], < (/15" m )1

Thus we have got

Kl < 1/y/16"ml],

and, in particularK,,, € L(L2(Q,, vp)). If B € Uy then

IBI" 1Kl < (s(B) 2P0 /{/1b],)" = A"
If |b|, = p%*1, thenr = pV/2r=V /pY/2 < 1. If |b|, = p*, thenr = pY/2r=D/p < 1.

SetSs = Y o KuB". B € Uspy. As A < 1, this operator belongs to the space
L(L2(Qp, vp)) and moreovel|Sgll < 1. AsTpf = f+ Sgf and |ISgfl < I f, we get
1T fIl = max(| fII, 1SgfII) = Il fll. Hence the operatdfy is an isometry of the space
L2(Q,, vp) for every g e Usp,).
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5. Gaussian representations for the operators associated with position and momentum
As for ordinary Schisdinger quantum mechanics, let us define the coordinate and momentum
operators inL>(Q,, vp) by
Zf(x) =xf(x)

. d
Pfx) = (=) (dx - (X/Zb)> f)

where f belongs to tha?, (i)-linear space of linear combinations of Hermite polynomials.
The coordinate and momentum operators so defined sddséanonical commutation
relations’:

[z.p] =11 )

where/ is the unit operator iiL2(Q,, v,). We shall see that these relations can be extended
on the whole ofL2(Q,, v).

Theorem 5.1.The operators of the coordinateand momentunp are bounded in the space
Lz(Qp, Vp) and

Izl = /161, Ipll = 1/y/1b1p. (8)

Moreovera andp are symmetric and satisfy (7) aip(Qp, vp).

Proof. Let

)= fuHyp(x) € L2(Q,p. ).

n=0

Then using the recurrence formula

Hn+1,b(x) = [XHn,b(-x) - anfl,b(x)]/b (9)
we get

&:Hn,b(x) = an+1,b(x) + an—l,b(x)' (10)
and

&f ) =) bfuHup1p() + Y nfuHy15(x).

n=0 n=1
Thus, using the strong triangle inequality we get

1 £11% < maxmaxibl3 | ful31(n + D, /bl maxinl] ful 2100 = DY,/ 1Bl ]
_ 201 n 2.1 n
= |bl, ma{max|n + 1|, ful, In!1, /b1, maxinly| ful5lntl,/151;]

b1, 1l 11

<
(as|n], < 1for alln € N). Thus|z| < ./Ibl,. Now we prove that|z |2 = 1D],.
Let n = p*, then

o = 12 Hye 112 = max((b 2| (p + DU, /1615 1 p* 210" — D1/ 1612 ).

k
But|(p*+ D!, = [pX!], and|pZ (pF— D], = p~*|pXl|,. Thusey, = |bl,(1p*!,/1blp ) =
b, || Hyx 1|12, which proves the first equality in (8).
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Using equations (4) and (10), we get

d
o np () = (/b) Hyp(x) = Hyy1p(x) = (/D) Hy—5/(x) .

SetT, = (d/dx — (x/2b)). We haveT,H, ,(x) = (n/2b)H,_1,(x) — (1/2)H,41,(x). TO
compare this expression with (10), we rewrite it as

T Hyp(x) = (1/20)[~bH,i15(x) +nH,_1,(x)] . (11)

The expression in square brackets is the same as in (10), the signum cannot play any role in
the estimates of the max-type. That is why we can||gé11| = (1/1b1p) 1z, which proves
the second equality in (8).

The symmetry ofz, p is easily verified from their definition.

6. Unitary isometric one parameter operator groups corresponding to operators
representing position and momentum

We shall computejf(z)], and [ (p)], .

If 1b], = p*** theny (&) = 1/(p*p™2p"*=D). If p # 3 then [ (@)], = 1/p*+t.
If p = 3then p@)], = 1/p*2 If |b, = p* theny@) = 1/(p*p"* ") and
[y @], = 1/p*™. SetR(b) = [y @)],.

If b, = p?** theny (p) = (p™?/p" @~ D)p*. If p # 3 then ()], = p*. If p=3
then (D)), = p*~ % If |b|, = p* then ()], = p*~*.

Setr(b) = [y @],

On the basis of propositions 2.1 and 2.2 and theorem 5.1 we easily get the following.
Theorem 6.1. The mapse — U(a) = €°%, a € Uy, and B — V(B) = €2, B € U, ),
are analytic one parameter groups of unitary isometric operators actihg(@),, v,). They
satisfy the Weyl commutation relations

U)V(B) =e V(U (a). (12)

Remark. The restrictions on the domains of the parameterand g arise from the
commutation factor'®®. Furthermore we have

R(b)r(b) =£(1/p) (13)

where£(1/p) = 1/p?, if |b|, = p*, and&(1/p) = 1/p.p # 3, if |bl, = p***, and
£(1/3) = 1/27 in the latter case. Thus the dependence on the covareotthe Gaussian
distribution has really disappeared. We can consider the relation (13pasda& analogue
of the Heisenberg uncertainty relations. It implies, in particular, that wiigh— 0 then
automaticallyR (b) — oo and vice versa.

Let us set

My f0) = P02 fy = 3

n=0
for f € L2(Q,. vy). Using proposition 2.1 and theorem 5.1, we easily get the following.

f(x) (14)

Proposition 6.1. The mapM : U, — 1S(L2(Qp, vp)), B — Mpg, is an analytic one
parameter group (indexed by the b&fl;)).

Remark. Of course, the function — e#*/? is not defined on whole, and we cannot
consider the operator (14) as an operator of pointweis multiplication.
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7. Operator calculus

It is well known that in the ordinary.»(R, dx) space the unitary groug(8) = €? 8 € R,
can be realized as the translation groug(B)v (x) = ¥ (x + B) for sufficiently good
functions v (x). If we consider the equivalent representationLZisrspace with respect to
the Gaussian measurg(dx) = (e‘xz/z”/«/an)dx on R, we get

VB (x) = e F1e P2y (x 4 p) (15)
or

V(B) = cpMpTp (16)
wherecy = e #*/%. We shall now prove that formula (16) is also valid in theadic case.

SetS(B) = cgMpTg, B € U,»), Where the operatodl, is defined by (14).

Theorem 7.1. The mapg — Sg, 8 € U.»),is one parameter analytic group of isometric
unitary operators acting if2(Q,, vp).

Proof. First the constantg defines an isometric multiplication operator in the space
L2(Q,. vp) for every B € U, becauselcg|, = 1. On the basis of theorem 5.1 and
proposition 6.1 we get thaf(8) is an isometric one parameter analytic group (because
r(b) < s(b)). To prove the unitarity of this group, it is sufficient to show that
(S(B)x", S(B)x™) = (x", x") for all monomialsx”,n = 0,1,... . By equation (14) we
get

(S(B)x", S(B)x") = e P12 (e7FF/2 (x 4 By & FF/2(x 4 B)")
= P2 N (= p/2b) I (1/K1 jHTy (n)
k,j=0

wherel;(n) = pr x**7 (x + B)*'v,(dx). By change of variables, according o= x + 8,
in the p-adic Gaussian integral [6] we get

Tij(n) = €772 3 (B/by" (1/mb) | (y = BN y> T, (dy).
m=0 0y

By proposition 6.1 we get
(S(B)x", S(B)x")
=[e " 3" (=B/2b)H (B/bY" (A mik! j1)(@" (& — BYx", (& — B)Tx")
m,k,j=0
_ e—ﬁz/b(eﬂi/be—ﬂ(;i—ﬂ)/ben’ efﬂ(ifﬂ)/ben) = (x", x").
Lemma 7.1. The groupsS(8) and V(8) havep as their common generator.

Proof. We haveS'(B)lg—0 = —x/B + Tglp=0 With Tg|g—o = d/dx, so thatS'(B)ls=0 =
d/dx —x/b. Since bothT; and S'(B) are bounded this implies the result.

As a consequence of this lemma and the analyticity of the one parameter gf@)ps
and V (8), we easily have the following.

Theorem 7.2. The representation (15), (16) holds for the operator grggg).
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Equation (15) could serve as starting point for an operator quantization based on a
calculus of pseudo-differential operators. Let us consider the expression

a(y, &) = [M /u du(@) du(B) a(a, p)ererish (17)

defined first for smooth functior@(«, 8) with compact supportsupp a C Uy, x Uy,. We
denote by symbod/i.(x), wherex is the integration variable, a Haar measure@gn with
values inQ,, see [17-19]. For every balf, this is a translation invariant additive set
function defined on the algebt&(l4,) generated by balls contained . However, this
measure is not bounded: diyp(A)|, : A € FU,)} = oco. Therefore, there exist continuos
functions f : U4, — Q, which are not integrable with respect to this measure. However,
the integral with respect tp is well defined forC*-functions f : U, — Q,. The integral
representation (17) gives us the interesting connection between the domaiges 8j and

a(y, §).

Theorem 7.3. Let a be theC? function and letsupp a C Up, x Up,. Then the symbok
defined by (17) is the*-function on the set{; x Uz, with 0,6, < 1/p, j =1,2.

The symbok(y, &) is not defined outside of the g, xU{;,. The physical interpretation
of Theorem 7.3 is evident. This is the consequence of the uncertainty relation ‘position—
momentum’.

In analogy with the usual Weyl procedure (see, for example, [30]) we set

G (x) = /u fu dn(@) du(B) dla, HU@V (B (x)
R(b) r(b)

= /M /u du(e) du(B) ae, B) expliax — B2/4b — Bx/2b}p (x + B) .

This formula realizes an analogue of the ussiglquantization. In the same way we can
realize thepz-quantization:

G (x) = / / du(@)dp(B)ate, BV (BYU (@) (x)
Urwpy Y Urpy

_ / f due) du(B) e, B) expliar — B) — B2/4b — Bx/2b)g(x + B).
Urpy J U

The problem of extending these relations to more general (‘distributioadit order
to get, in particular, the polynomial symbat$ will be considered in further work.

8. On exactness of the measurement of positions and momenta

Let us consider the consequences of Theorem 5.1 concerning the measurement process. To
simplify our considerations, we choo§le, = p%,k = 0,1,2,.... Then||z| = p* and
Ipll = p~~.

If |Al, > [I&] = p*, then the resolvent operatd, = (Z — A/)~! exists and. does not
belong to the spectrum of the coordinate operator. Thus, it would be impossible to mesure
coordinatese = A for such values oh. By a similar reasoning we get, that it would be
impossible to measure momenta= u for u such thatju|, > |k|,p~*. But the condition
|Al, > p* is equivalent to the canonical expansion

)»=)\—1P_l+"'+)to+"')mem-i-"' (18)
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wherex; =0,1,...,p—11=k+1k+2,... andAr_; # 0. Let us remark that infinitg-

adic fractions should be interpreted only as mathematical idealizations (in a similar way as
for infinite real fractions), whereas physical values are in reality given by rational numbers
of the type

A=A p 4 F A (19)

For the moment, let us consider a system of units where the Planck cohstatit Then
we cannot measure momenta

p=pp' e " (20)

wherel =k —1,k—2,... andu,; # 0 in the present Gaussian representation.

Computing the spectra of the-adic position and momentum operators directly remains
an open problem (we have only found balls which contain these spectra).

What are the possible physical interpretations of our results?

Our main result can be interpreted as stating that a non-Archimedean structure of space
is equivalent to the finite exactness of a measurement.

This finite exactness may have different physical interpretations. First, we can consider
our p-adic Hilbert space representation of quantum mechanics as a mathematical realization
of the old idea in quantum mechanics that the result of a measurement involves also
the influence of the measurement equipment. According to Bohm [31] ‘the so-called
‘observables’ are not properties belonging to the observed system alone, but instead
potentialities whose precise development depends just as much on the observing apparatus
as on the observed system.” How can we include these properties of the observing
apparatus into the structure of the space of quantum states? p-BHuaéc Hilbert space
representation is one of the possible ways. Here we may fix the exactness of the position
(or momentum) measurement generated by the apparatus and constrpeadieHilbert
space representation on the basis of this exactness.

Another physical interpretation of our main result is connected with the old idea of
the existence of a ‘fundamental length.” According to this point of view, the space is
not homogeneous in the direction of the microworld and there exists some limiting value
of lengthslyng (such that any length < lxyng is deprived of any meaning). How can
we describe such a situation in mathematical terms? There are several possibilities, see
[32, 33], and thep-adic numbers are one of them. We have constructed (on the quantum
level) the position representation where there exists a limiting measurable value of the
position. One of the purposes of the ‘fundamental length’ hypotesis was to avoid all
divergences in quantum field theory. Opradic approach (and related ones, see, e.g.,
[5-13, 22, 23, 28, 29]) operates in the same direction: all unbounded quantum mechanical
operators (in the usual quantum mechanical formalism based on real and complex numbers)
become bounded in the-adic representation. The picture would be reproduced in a quantum
field formalism built on the basis gf-adic numbers. Such a formalism will be described
in our further investigations.
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